
J .  Fluid Mech. (1978), vol. 84, part 1, pp .  145-166 

Printed in  &eat Britain 
145 

Rimming flow : numerical simulation of steady, viscous, 
free-surface flow with surface tension 

By F. M. 0RR-f  A N D  L. E. SCRIVEN 
Department of Chemical Engineering and Materials Science, 

University of Minnesota, Minneapolis 

(Received 3 November 1976) 

Flow in a partly liquid-filled, rotating, horizontal cylinder is analysed by means of 
finite-element numerical simulation. Of alternative methods for locating the free sur- 
face, a boundary collocation scheme with Newton-Raphson iteration converges. This 
method forces the residual in the normal-stress boundary condition to zero at  a finite 
set of points on the liquid meniscus. Solutions of the steady, two-dimensional, incom- 
pressible flow problem show circumferential variation of the liquid-film thickness and 
corresponding pressure and velocity fields, including recirculation zones. The com- 
plications of an unknown meniscus location and a nonlinear normal-stress condition 
when surface tension is significant are illustrated. The finite-element method proves 
an effective and convenient tool for such flows, in which inertial, gravitational, pres- 
sure, viscous and capillary forces are all important. 

1. Introduction 
Viscous liquid flows partially bounded by a free fluid interface with gas occur in 

endless variety. One need look only as far as coating industries to fmd abundant 
technologically important flows which challenge accurate mathematical description. 
There are difficulties because (i) the location of the free surface is not known a prior;; 
(ii) the shape of the free surface influences the flow through a complicated nonlinear 
boundary condition, the normal-stress condition; (iii) there may be a stress singularity 
at  any three-phase contact line, where a free surface intersects a solid boundary (Huh 
1969; Huh & Scriven 1971). Generally some sort of iterative procedure is needed to 
locate the free surface, which shifts from trial to trial and rarely coincides with any 
convenient co-ordinate surface. Convergence of any given procedure is an open ques- 
tion. Nor is uniqueness of a solution obvious, as discussed by Taylor (1963). Never- 
theless, approximation methods offer the main hope for solving the full flow equations 
in all but the very simplest of viscous free-surface flows. In this paper we report on 
two iterative methods for free-surface flows in which the effects of surface-tension, 
viscous, gravitational and inertial forces are all important. The case treated is the 
steady rimming flow of a liquid film inside a horizontal rotating cylinder. Various limits 
have been studied recently by Rusckak & Scriven (1976). 

When motion is steady at a free surface between liquid and effectively inviscid, 
massless gas the boundary conditions are (i) no flow normal to the surface, (ii) no 

t Present address: Shell Development Company, P.O. Box 481, Houston, Texas 77001. 
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tangential stress on the surfacet and (iii) balancing of gas pressure, liquid pressure and 
normal viscous stress of the liquid with the capillary pressure, the latter being the 
product of the surface tension and mean curvature of the surface. All iterative schemes 
employ a similar strategy. First a location of the free surface is chosen, either by an 
informed guess or on the basis of the previous iterations. The Navier-Stokes and 
continuity equations are solved for the velocity and pressure fields in the liquid, but 
only two of the three boundary conditions are satisfied. The residual in the third 
boundary condition is then used to decide how to alter the location of the free surface, 
and the process is repeated to convergence- or frustration. 

Iterative schemes can be classified according to which of the three boundary con- 
ditions is used as the criterion for relocating the free surface. Stream-surface schemes 
are those in which the kinematic boundary condition is employed, a new approxi- 
mation to the position of the surface streamline being found from the velocity field 
determined with the preceding approximation. Normal-stress schemes are those in 
which the imbalance in the normal-stress boundary condition is the basis for improving 
the surface location. Tangential-stress schemes would be those in which the residual 
viscous shear stress at  the boundary was used, but no scheme of this type has been 
reported. 

Nickell, Tanner & Caswell (1974) used a stream-surface scheme to solve by the 
finite-element method the problem of the creeping Newtonian jet; Tanner, Nickell & 
Bilger (1975’) extended the computation to non-Newtonian liquids. The new free 
surface is the streamline originating from the orifice lip at  each iteration. Not described 
is the procedure followed when this streamline falls outside the previous one, i.e. 
outside the domain in which the approximate velocity field is known. Presumably 
this velocity field is extrapolated in some admissible way. Stream-surface schemes and 
the finite-element method have also been used by Thompson, Mack & Lin (1969) for 
slow flow of an incompressible non-Newtonian liquid and by Chan & Larock (1973) 
and Larock & Taylor (1976) for a potential jet. All of these investigators neglected 
capillary pressure. That is, the effect of surface tension was excluded. 

Williamson (1970,1972) included the effect of surface tension and employed success- 
fully a normal-stress scheme. He studied the flow when two flexible but inextensible 
strips with viscous liquid between them are pulled apart as they emerge from passing 
between a pair of cylindrical rollers. He neglected inertial effeuts and solved the 
resulting biharmonic equation for the stream function by means of a finite-difference 
rather than a finite-element method. Williamson represented the entire free surface 
of interest by a single sixth-degree polynomial with two adjustable parameters. These 
were adjusted in each iteration to minimize the residual in the normal-stress boundary 
conditions. Details of the procedure are not reported. 

Two new normal-stress schemes are described here. For the problem of rimming 
flow one is successful and the other is not. Both require solution of a flow problem 
given an estimate of the free-surface location. The solutions are generated by the finite- 
element method, which has advantages over other available methods, as discussed in 
$3.  The iterative schemes and their convergence behaviour are covered in 334 and 5 
and sample numerical solutions of the rimming flow problem are presented in 3 6. 

in the surface, a possibility which is not considered here. 
t The tangential stress on the surface does not vanish when there are surface-tension gradients 
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FIQURE 1. A horizontal cylinder rotates about its axis. A film of liquid of thickness 
R,  - F(0)  is distributed on the interior wall of the cylinder. 

2. Rimming flow 
Consider the flow of a liquid layer around the inside surface of a rotating horizontal 

drum or cylinder, as sketched in figure 1. The hollow rigid cylinder is of radius R, and 
effectively infinite length. It spins about its axis with rotational speed w .  Distributed 
over the cylinder wall is a film of thickness R, - F of incompressible Newtonian liquid 
whose free surface exhibits a surface tension u. Inside the film is a core of inviscid gas 
at a specified pressure Po; the density of the gas is negligible. Only steady two- 
dimensional flows are considered. When the effect of the gravitational field vanishes 
the flow is necessarily solid-body rotation of a uniform liquid film at  speed w .  

This and closely related flows are encountered in cream separators, liquid degassers, 
pipe coating, rotational moulding and spin casting of materials, and other applications. 
The case treated is a non-trivial example of a steady, two-dimensional, viscous flow 
with a free surface, and it has a couple of features which recommend it for testing 
iterative schemes for locating the free surface. First, there is neither an inflow nor an 
outff ow boundary and so the complication of upstream and downstream boundary 
conditions is avoided. Second, there is no gas/liquid/solid contact line and so the 
danger of singularities there is avoided too. 

The governing equations for the flow are 

V . @ V V + T ) - G  = 0, V . V  = 0 in D, (2.1) 

(2.2) 

(T is the stress tensor, I the unit tensor). The flow domain D is F(0)  < R < R,, 
0 < 8 < 2n. The pressure and velocity are used rather than the stream function and 

T = PI -p[VV+ (VV)T] 
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vorticity because the form of the normal-stress boundary condition makes it useful 
to have the pressure available explicitly. 

Convenient dimensionless variables are 

r 3 RIR,, v = V/wR,, p = (P- Po)/pw2RZ, f = FIR,. (2.3) 

Appropriate dimensionless parameters are a Reynolds number Re, a Weber number s 
and a dimensionless gravity g :  

Re zz pwR:/,u, s = clpwZRg, g = G/w2R,. ( 2.4) 

The governing equations become 

where 

and, in cylindrical polar co-ordinates, 

V . ( v v + T ) - g j  = 0, V . v  = 0, 

T = p l -  Re-l[Vv + ( V V ) ~ ]  

V = era/& + eer-l ala8. 
The boundary conditions are the adherence condition on the rigid cylinder 

the traction conditions 
v = e e  on r =  1, 

nn:7+2Hs = 0, t n x  = 0 on r = f(8) (2.7) 

and the kinematic condition 

The unit normal and tangent to the free-surface are given by 

n . v  = 0 on r = f(8). 

Because the flow is incompressible the free-surface location must satisfy the const'raint 
that the volume of liquid (and hence the volume of gas) remains constant: 

(2.10) 

Finally, all of the variables are periodic with period 2n, i.e. 

v ( r ,  8 )  = v(r ,  8 + 2n), p(r ,  8) = p ( r ,  8+ 2n),  f(0) = f (8  + 2n), (2.1 1)  

as are all derivatives of these variables. 
The integral constraint (2.10) sets the level of pressure in the flow field. Without it, 

the pressure is determined only up to a constant since it appears only in natural 
boundary conditions. 

A number of simplified versions of this problem have been solved. Phillips (1960) 
found perturbations about the zero-gravity solution but neglected the contributions 
of viscosity and surface tension. Cerro & Dieber (1976) solved a boundary-layer 
approximation but also neglected surface tension. Ruschak & Scriven (1976) included 
surface tension in their perturbation analysis for small gravity though the solution 
at first order in gravity is not influenced by surface tension (see also Ruschak 
1974). Greenspan (1976) also used perturbation methods, and studied an interesting 
variant of this problem in which the gas core is replaced by a weightless rigid cylinder. 
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3. Finite-element formulation 
In the finite-element method, the flow domain is divided into geometrically simple 

subdomains (usually triangles or quadrilaterals) and the solution is sought as an 
expansion in terms of polynomial trial functions of low order which are defined within 
neighbouring subdomains (elements) and vanish elsewhere. The trial functions are so 
chosen that the expansion coefficients retain physical significance: the coefficients are 
the values of the dependent variables (and also their derivatives in more elaborate 
versions) at  the vertices of the elements. The unknown coefficients in the expansions 
are chosen to force to zero a set of weighted residual integrals in which the trial func- 
tions are also used as the weighting functions, a Galerkin technique. Typically, an 
integration by parts is performed which casts some of the derivatives of the differential 
operator off onto the weighting functions; in the same manipulation the boundary 
conditions enter via an application of the divergence theorem. 

The finite-element method has aspects which suit it  well to  the problems considered 
here. First, the elements need not have uniform size and shape, so that irregular 
domains, those bounded by other than co-ordinate surfaces, require no special hand- 
ling, a significant advantage for free-surface flow problems, which by their nature 
occur on irregular domains. In  addition, the fact that element sizes need not be uniform 
means that computational power can be deployed efficiently by using smalI elements 
in regions of rapid variation, within boundary layers for instance, and large ones 
elsewhere. Second, boundary conditions which are natural conditions for the differen- 
tial operator enter into the finite-element approximations in a particularly simple 
way. Separately constructed approximations to such boundary conditions are not 
required as they are in finite-difference methods. An added advantage is that singular 
trial functions can easily be used in the finite-element method when the problem 
solution is itself singular. Singularities can arise in solutions of the Navier-Stokes 
equation a t  a three-phase contact line (Huh 1989; Huh & Scriven 1971; Ruschak 
1974; Dussan V. & Davis 1974). The price to be paid for these advantages is the 
complexity of the resulting computer programs, which are substantially more difficult 
to develop than corresponding finite-difference programs. 

The approximate solutions for the velocity and pressure fields are sought as expan- 
sions in a set of trial functions $$ ( r ,  d )  which in the eth element take the form 

where u and v are the velocities in the r and d directions, respectively. These expan- 
sions are substituted into the momentum and continuity equations; the expansion 
coefficients ui, vj and pi are selected to make the resulting residuals in the differential 
equations orthogonal to each of the trial 'functions. The weighted residua1 integrals 
for (2.1) are 

i = 1,2, ...,&. (3.2) i S, { $ i ~ .  (vv + 7) - $igj)du = 0, 

ID $iV. vda = 0, 
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Integration by parts and the divergence theorem give 
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i = 1,2 ,..., Q ,  (3.3) 

{V#(. (vv + 7) + g5igj} da -t- q3i n . (vv + 7) ds = 0, 
S d D  

ID - V#i. vda + IaD #{ n . vd8 = 0, 

where n = e, on the cylinder surface and n is given by (2.9) on the free surface. On both 
the solid and the free boundary n . v = 0. The stress on the free surface has only normal 
components. Thus n.7 = (nn:T)n, and the final form of the finite-element analogue 
of the Navier-Stokes and continuity equations is 

{V#i.(vv+~)+#igj}da- 

ci = J v#i .vda = 0, 
D 

i = 1,2 ,..., &, (3.4) 

where 8 0 ,  is the free surface, 8 0 ,  the cylinder surface and nc = e, the normal to 80,. 
The integrals are evaluated numerically by a seven-point Gaussian quadrature formula 
for a two-dimensional triangular simplex given by Stroud (1971, p. 314). 

Equations (3.4) are nonlinear in the expansion coefficients for u and v ;  hence some 
sort of iterative solution is required. Oden (1972) reviewed the many methods which 
can be applied to finite elements. One of the most common is the Newton-Raphson 
method: the solution 01 to a set of nonlinear equations of the form 

is approximated as 

where [J$)] is the Jacobian matrix with entries 

Hi(aj) = 0, i,j = 1,  . . . , Q ,  

a(k+l)  = a(k )  - [J@)] -1  H(&)), 
23 

Much effort has been devoted to the development of effective elements and trial 
functions, and there are many possible choices. Strang & Fix (1973) discuss many 
of the more popular elements. The simplest combination, triangles with linear trial 
functions, could be used for the rimming flow problem, but more complicated, 
higher-order trial functions bring benefits which are useful for this type of problem : 
(i) derivatives of the approximate solution become more accurate as the degree of the 
polynomial trial functions increases and (ii) element boundaries can be bent to follow a 
curved boundary more closely. Indeed, the velocity expansions must be differentiated 
to yield stress data for the free-surface Iocation part of the algorithm; and the free 
surface is rarely a co-ordinate surface, so that elements which can follow the more 
complicated free-surface shape are worthwhile. Such features are not cost free. The 
bandwidth of the Jacobian matrix increases rapidly as the degree of the trial functions 
increases. The nonlinear transformations which bend element boundaries decrease 
the accuracy of the numerical integration slightly. The optimal choice of trial functions 
and elements is a large subject in itself, and there is no clear indication, so far, of a 
best combination. 
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One choice which adapts well to the requirements of the rimming flow problem is 
the Hermite cubic triangular element of Z16mal (1970, 1973u, b ) .  The trial functions 
are cubic polynomials of the form? 

(3.5) 

There are three such functions associated with each node; they are chosen to have the 
properties that 

@ = ail + ui,r + ui30 + ui,rz + ai,re + ui,e2 + uz,r3 + a,,rZe + ui,r02 + ailoe3. 

A tenth condition is required to specify the polynomial (3.5) uniquely. ZlBmal (1970) 
requires that the trial function should reduce to a quadratic along the line connecting 
node 1 of the triangle with the centroid of the element. 

The expansion of a particular variable, say p ,  in the eth element is 

The expansion coefficients p y )  are the values of p and its r and 8 partial derivatives 
at the three nodes of the triangle: pi1) is the pressure at node 1,  pf2)is a p p  at node 1, 
pi3) is aplae at node 1,  and so on. These trial functions have continuous first derivatives 
at the nodes but not along element boundaries. 

It should be noted that the same basis functions are used here for both the pressure 
and the velocity field. This choice simplifies programming. More important, it ensures 
that the cubic transformations used to follow the free surface, which are chosen to be 
consistent with the cubic polynomial expansion of the free-surface position (see §4), 
are isoparametric with all of the trial-function expansions employed in the problem. 
In addition, the radial derivative of the pressure on the free surface, needed in one 
of the surface finding schemes, is readily available. 

4. Two normal-stress schemes 
Iterative schemes which employ the residual in the normal-stress boundary con- 

dition, rather than that in the kinematic condition, as the criterion for adjusting the 
location of the free boundary appear quite likely to converge when surface tension is 
important. The reason is that in this type of scheme the kinematic and tangential- 
stress boundary conditions, which depend on surface orientation but not curvature, 
are imposed while the normal-stress boundary condition is not. The normal-stress 
condition depends on the mean curvature of the surface, which depends on second 
derivatives of surface position, and is therefore least accurately known of t,he three 
conditions at any given state of a numerical solution. 

t For elements on the free surface, the trial functions differ slightly because cubic trans- 
formations are used to  distort surface elements to follow the surface shape more closely (Z16mal 
1973a, b ;  Orr 1976). 
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Both of the iterative schemes discussed below require a representation of the free 
surface, which for the rimming flow problem is a function of 6 only. Expansions of the 
surface position in finite-element trial functions have proved capable of conveniently 
representing complicated menisci (Orr, Scriven & Rivas 1975; Orr 1976; Orr, Brown 
& Scriven 1976). So we seek to find the expansion coefficients u5 in 

f (6 )  .z % "f@f(@, (4.1) 

where Q, is the number of trial functions in the expansion. Because second derivatives 
of the expansions are needed, functions of higher than first order are needed. Hermite 
cubic functions prove to be convenient; they have continuous first derivatives but only 
piecewise-continuous second derivatives. There are two trial functions associated with 
the ith node on the free surface, both cubic polynomials in 0: 

I - 1  

(4.2) @i (k) - - ail (k) + a ~ ~ ) e + a ~ ~ ) e a + . ~ ~ ) e 3 ,  i = 1,2, ..., Q,, k = 1,2. 

The coefficients in the trial function are so determined that 

The trial-function expansion in the eth element for f (0) is then 

2 2  

i-1 I - 1  
f(0) N" c f$')#)(6)# (4-4) 

As before, the expansion coefficients f :*I retain physical significance: f il) and f t2) are 
the approximate values off and dfld6 at 0 = 19~. 

Scheme I : boundary collocation with Newton-Raphson iteration 

In terms of the location of the free surface f (6) the normal-stress boundary condition 
(2.7) is 

where 

The correct location of the free surface is that for which (4.5) is satisfied, though, of 
course, the pressurep and the coefficients a, b, c and d from the stress tensor couple the 
surface location to the flow field problem. Given a location of the free surface and a 
corresponding solution for the velocity and pressure fields the residual in (4.5) can be 
evaluated. In a standard collocation method the residuals are algebraic functions of 
the expansion coefficients. Therefore selection of the coefficients reduces to the problem 
of solving the nonlinear set of algebraic equations. The situation here is more com- 
plicated because the dependence of the pressures, velocities and velocity derivatives 
in (4.5) is through solutions to the Navier-Stokes equations rather than through an 
explicit functional form. In  addition, the free-surface expansion must satisfy the 
volume constraint (2.10). If a Newton-Raphson method is to be used, the Jacobian 
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matrix of derivatives of the boundary residuals must be computed. A forward- 
difference formula (Oden 1972, p. 283) is used here to estimate those derivatives by 
perturbing each of the expansion coefficients in turn: 

(4.6) aBS/hj M h-l [B, (a1, a2 . . . , ~j + h, . . . a,) - Bi (a1, a2 . . . , a,)], 
where Bi is the value of the boundary residual at  the ith collocation point. Then the 
Newton-Raphson iteration takes the form 

&+I) = a(k) - [aBi/aaj]-l B, (4.7) 

where B is the vector of the normal-stress residuals evaluated a t  the Q, collocation 
points, plus the residual in the volume constraint (2.10), and a is the vector of the Q, 
expangon coefficients for the free surface, plus the pressure to be specified at a datum 
point in the flow field. In  order to have Q, collocation points on the free surface two 
collocation points per element are required. The work of Douglas & Dupont (1973) 
suggests that the Gauss points in each element yield better accuracy than other 
choices of collocation points, and so Gauss points are used here. Because construction 
of the free-surface Jacobian matrix [8Bi/aaj] is the most time-consuming step of the 
computation, it is reasonable to recompute that matrix only if the (Euclidean) norm 
of the boundary residual vector does not decrease from one iteration to the next. This 
constitutes a modified Newton’s method (Oden 1972, p. 280). Thus the algorithm for 
scheme I is as follows. 

(1)  Guess a set of free-surface expansion coefficients. 
(2) Evaluate the Jacobian matrix for the flow field problem. Guess the pressure a t  

one node and solve (2.5) for new velocities and pressures, imposing only the kinematic 
and tangential-stress conditions on the free surface. 

(3) Compute 11 Bll , the normal-stress residuals a t  the Q, collocation points and the 
volume-constraint residual. 

(4) If IlBll has increased from the previous iteration (or if this is the first iteration) 
compute the surface Jacobian matrix [8Bi/aai]. 

(5) Calculate a new surface-location expansion from (4.7). 
(6) If the change in surface location is above tolerance go to (2).  
The general surface representation and the systematic procedure for improving the 

approximation of the free-surface location make this scheme applicable to a much 
broader class of free-surface flow problems than Williamson’s device, which is the 
only other approach by way of the normal-stress residual. 

Scheme 11: Jinite-element solution of a modified Laplace- Young equation 

The normal-stress boundary condition (2.7) is a generalization of the Laplace-Young 
equation of capillary hydrostatics, which balances capillary pressure with the jump 
in hydrostatic pressure across a curved meniscus. Efficient methods have been devel- 
oped for solving the Laplace-Young equation (e.g. Huh 1969; Orr et al. 1975). Liquid 
flowing beneath the free surface adds viscous stresses and a more complicated pressure 
field to the usual hydrostatic pressure distribution. Thus an alternative procedure 
for finding the free surface is to solve the modified Laplace-Young equation in ,which 
the normal stress a t  the free surface is given by the flow solution from the previous 
iteration. The algorithm for scheme I1 is as follows. 
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(1) Guess a set of free-surface expansion coefficients and a pressure for a datum 
point in the flow field. 

(2) Solve the momentum and continuity equations (2.5) for new velocity and 
pressure fields, imposing only the tangential-stress and kinematic boundary con- 
ditions. 

(3) Solve (4.5) for a new location of the free surface using the values of a, b, c and d 
evaluated from the velocities and pressures at  the previous free-surface position. 

(4) Check the integral constraint (2.10). If the residual is sufficiently small go to 
(2) and repeat (2)-(4) to convergence. Otherwise adjust the guess for the pressure at 
the datum point and go to (3).  

This scheme generates successive approximations to the location of the free surface. 
The one-dimensional finite-element method which is used here to solve (4.5) selects 
a surface shape which makes the residual in the normal-stress condition zero on the 
average over the surface. It does this for the stress field at  the free surface which 
resulted from the flow solution for the previous free-surface location. 

The weighted reaidual integrals for (4.5) are constructed just as in $3, except that 
in applying the divergence theorem the curvature of the surface over which the 
integration is performed has to be taken into account (Weatherburn 1939, p. 238). 
The resulting weighted residual integrals are 

(4.8) 

where y = f& The nonlinear equations (4.8) can be solved by a Newton-Raphson 
method which parallels (3.9). 

The components of the stress a t  the free surface, a, b ,  c and d,  are treated as constants 
in (4.8). They are nevertheless dependent on the position of the free surface, and the 
consequences of this dependence are clarified by the asymptotic expansion of the 
normal-stress boundary condition for small gravity (Ruschak 1974; Ruschak & 
Scriven 1976). Expansions of each of the dependent variables as power series in the 
small parameter g are constructed: 

(4.9) 1 f =J@0+f1g+fzg2+ ... 7 1, k 1,0+1,19+P29*+ ..., 
u k uo+u,g+u2g2+ ..., v w v0+v1g+v2g2+ ... . 

The solution for zero gravity is just solid-body rotation: 

Po = *(r2 -f 0 " )  - g o ,  urJ = 0, @o = r,  (4.10) 

wheref, is a constant set by the volume of liquid. Substitution of the expansions (4.9) 
into the normal-stress boundary condition (4.5) yields the equation at  first order for fl: 

fi+f,+---- 2f%aul PIf% = 0, 
sRe ar s 

(4.11) 

where p1 and aul/ar are, in this iterative scheme, obtained from the flow field solution 
for f (6) = fo. The solution to (4.11) is 

(4.12) 
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where a and p are constants and 
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The solution must satisfy the orthogonality conditions 

which arise from the periodicity requirements on f and its first derivative. The solu- 
tions for pl and ul were found by Ruschak (1974) to be 

p l ( r ,  0) = Re[kl(r)eie], uI(r, 8) = Re[k,(r)eis], (4.14) 

where k,(r )  and k,(r) are complex functions of r. The orthogonality conditions (4.13) are 
clearly violated by q(0), which can contain no component of sin 6 or cos 8 if there is 
to exist a solution for fi. Thus the iterative scheme inherent in (4.8) is not well posed: 
there is no solution for fl with the data from the flow problem a t  first order. 

If, however, the expansions (4.9) are modified to include a dependence on the loca- 
tion of the free surface they become 

(4.15) 

and so on. The only additional term which survives a t  first order comes from the 
pressure expansion, so that (4.11) takes the form 

where 

This problem has the solution 

with the orthogonality conditions 

~ ~ c O s [ ( l - G ) t ( z n - S ) ] P ( E ) r 1 5  = 0. i 

(4.16) 

(4.17) 

(4.18) 

Since the functions sin8 and cos8 do not lie in the null space of the operator in (4.14) 
the orthogonality conditions do not automatically rule out the existence of solutions 
as they did above. 

Thus (4.8) must be modified by the substitution of an expansion for the pressure 
in the surface location for what was previously just the pressure a t  the previous 
location of the surface f,, i.e. 

(4.19) 
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Numerical calculations with (4.8) as originally derived completely confirm the pre- 
diction that no solution exists. The linearized set of equations is inconsistent when 
stress data from the flow field calculation are used to find new expansion coefficients 
for the free surface. The substitution of (4.19) for the pressure in (4.8) yields solut,ions 
with no difficulty, however. 

5. Convergence behaviour 
Solutions to the flow problem depend on four parameters: the Reynolds number Re, 

the dimensionless surface tension or Weber number s, the dimensionless gravity 
parameter or inverse rotational Froude number 9,  and the liquid loading, which is set 
by the average surface radius fo. Since the solution at zero gravity is known, the gravity 
parameter is an obvious choice as an imbedding parameter; for small increments in the 
gravity parameter the sohtion should be close to that for the previous value of the 
gravity. The Reynolds number also can be used as an imbedding parameter, though 
the appropriate size of Reynolds number increments depends strorigly on the size of 
the gravity parameter. 

In  our experience scheme I generated convergent solutions for all cases attempted 
(see §6), even when the initial boundary residual vector seemed large, i.e. the initial 
guess was poor. Usually three to five iterations were sufficient to reduce the maximum 
correction to any of the free-surface expansion coefficients to less than 

On the other hand, scheme I1 did not yield convergent solutions except in one very 
special case: for g = 0 the solid-body-rotation solution was obtained if the initial guess 
for the surface was a circle centred a t  the origin; for other guesses the computation 
diverged even at zero gravity. The divergent behaviour was also observed when the 
initial guess for the location of the free surface seemed very good. For instance, the 
solid-body-rotation solution was used as a guess for the solution at  g = At such 
low gravity the initial guess is very close to the true solution yet the iterative process 
fails to converge. 

The reason almost certainly lies in the sensitivity of the pressure field to the surface 
location, which in turn is highly responsive to the pressure field through the normal- 
stress boundary condition (4.5). At each iteration the ' correction' to the free-surface 
position causes changes in the pressure and velocity fields which then cause larger 
alteration0 in the free-surface position. Another manifestation of the same basic issue 
is the necessity of expanding the pressure field in the surface location before any 
surface solution can be found, as discussed in the preceding section. 

For the rimming flow problem scheme I converges whereas scheme I1 does not. The 
difference between the two is plain. The second selects a new surface location which 
balances normal stresses obtained from the current Aow solution, which is in turn 
based on the current location of the free surface; but this method contains no measure 
of whether the new solution will actually reduce the imbalance in normal stress. 
Scheme I uses not only the imbalance in normal stresses but also estimates how that 
imbalance varies with surface location. Thus it demands substantially more data 
about the behaviour of the residual in the normal-stress boundary condition, and the 
additional information is sufficient to produce convergence. 
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Gravity, g 

FIGURE 2. Convergence of the numerical solutions to the asymptotic solutions for small gravity 
(g + 0) when Re = 1, s = 1 andf,, = 0.5. Asymptotic solutions of Ruschak & Scriven (1976). 

6. Results of numerical simulation 
Accuracy 

The obvious first test of the computer program (RIMTLOW) developed as described 
above is whether it accurately reproduces the solid-body-rotation solution when the 
gravity parameter is zero. For a mesh of twelve nodes in the 6 direction and only two in 
the r direction and parameter values Re = 1 ,  s = 1 andf,, = 0.7, RIME'LOW produces 
velocities and a pressure which deviate from their exact values by about 1 x and 
6 x respectively. The solid-body-rotation solution can be represented exactly 
with the Hermite cubic trial functions. Therefore at  zero gravity there is no interpola- 
tion error at  all. Moreover, the polar co-ordinate elements represent the zero-gravity 
domain exactly. The only remaining source of error is the numerical integration step. 
It is not exact because the functions sin 6 and cos 6 appear in the weighted residual 
integrals. 

An additional test is provided by the asymptotic solutions for small gravity 
(Ruschak & Scriven 1976). That the finite-element numerical solutions agree very 
well with the asymptotic expansions is illustrated by figure 2. At g = 0.01 the solutions 
for the free-surface location and radial velocity differ only in the fifth decimal while 
azimuthal velocities differ by less than 0.0001. The pressures differ by about 0.002. 
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f 

_ _ _ -  

0.00 I4 '"I 

FIGURE 3. Parameter space in which rimming flow solutions were found (see text). 0,  average 
film radius f,, = 0 . 5 ;  0, f,, = 0.8.  Arrows indicate the initial guess used; broken arrow shafts 
denote that solid-body rotation was guessed. Circled numbers are the numbers of iterations 
required to reduce corrections to the surface position to less than 10-6. The decimal numbers 
are the maximum deviation of the free surface from the average film radius, i.e. I f - f o l .  

Evidently the pressures produced by the finite-element program are somewhat less 
accurate than the velocities and the surface location. This agrees with the results of 
Hood & Taylor (1974), who found that the pressure field was less accurately repre- 
sented than the velocity fields in a confined flow problem where the same trial-function 
expansions were used for both velocities and pressure. Use of lower-order basis func- 
tions for the pressure field yields more accurate pressure values but the continuity 
equation is less accurately satisfied. A satisfactory explanation for this behaviour 
has not yet been given. 

What is remarkable is the ,agreement between the numerical and asymptotic solu- 
tions when the gravity parameter is not small. Even for g = 2.0 the free-surface 
locations differ only in the third decimal. Ruschak's solutions a t  first order in gravity 
are quite accurate for the parameter set shown in figure 2. At higher Reynolds number, 
however, the agreement deteriorates more rapidly with increasing gravity. 

The accuracy of the solutions which deviate substantially from solid-body rotation 
has not been established. Further refinement of the fairly crude meshes used here 
(three nodes radially, twelve azimuthally) would give an indication of that accuracy, 
but the matrix used to solve the flow problem could no longer be stored in core on the 
CDC Cyber 74 machine used for these computations. A frontal equation solver such as 
that developed by Hood (1976) would be better suited to external st'orage of the flow 
matrix than the band solver used here. 
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FIGURE 4. Effect of increasing gravity on (a) the free-surface location f, ( b )  the free-surface 
radial velocity u, ( c )  the deviation v-f of the free-surface azimuthal velocity from solid-body 
rotation and (d )  the liquid pressure p+sl fo  at the free surface. Re = 1 ,  s = 1,  fo = 0.5. 

e e 

Sample solutions 
Solutions for a selection of parameter sets were found in order to validate the numerical 
solutions and to test the effect of varying each of the parameters. Figure 3 is a map of 
the parameter space explored. The horizontal axes are the Reynolds number and 
gravity parameter and the vertical axis is the surface-tension parameter. Solid points 
indicate solutions for a liquid loading fo = 0.5, i.e. the meniscus is on the average at 
half the cylinder radius. Open points are solutions for a lighter loading given by 
f o  = 0.8. The parameter sequence used to obtain the solutions is indicated by the 
arrows between neighbouring points. Broken arrows mean that the zero-gravity 
solution, i.e. solid-body rotation, was used as the initial guess. The encircled number 
accompanying the arrow is the number of iterations required to reduce the incremental 
change in surface location to less than 10-5. The decimal number accompanying each 
solution point is the maximum deviation of the free-surface location from the average 
free-surface radius, i.e. 1 f - f o l .  This deviation is a good indicator of corresponding 
departures in the velocity and pressure fields. 

From figure 3 it  is plain that increasing deviation from solid-body rotation is caused, 
as expected, by increasing the Reynolds number or the gravity parameter, or de- 
creasing the surface-tension parameter. The number of iterations to convergence 
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= O  

FIQURE 5. Free-surface location when g = 0.5, Re = 150, s = I andfo = 0.8. On the ascending 
side the azimuthal velocity lags the cylinder and on the descending side it leads, owing to gravi- 
tational acceleration. At the bottom (0 N tn) a small region of recirculation has appeared. 

depends not only on the size of a given parameter change but also on the values of the 
other parameters. 

The effect of varying the gravity parameter with the other parameters held fixed 
can be seen in figure 4. The deviation of the meniscus location from the circle in solid- 
body rotation increases steadily as the gravity parameter increases, as shown in 
figure 4 ( a ) .  As the circular meniscus shifts off concentricity (and begins to deform) 
the radial velocity at  the free surface must also depart from zero, and that departure 
is shown in figure 4 ( b ) .  The free-surface radial velocity changes sign when the film 
attains its minimum and maximum thicknesses. The departure of the free-surface 
azimuthal velocity from solid-body rotation is shown in figure 4(c). For the low 
Reynolds number case shown here, the departures are small, though it is clear that the 
liquid alternately lags and leads the cylinder on the ascending and descending sides 
of the domain as gravity alternately decelerates and accelerates the flow. Figure 4 (d) 
shows the effect of gravity on the liquid pressure a t  the free surface. As expected, the 
pressure field is more sensitive to changes in gravity than are the velocity fields, 
though this sensitivity clearly depends on the size of the surface-tension parameter 
(the Weber number), since it is the surface tension which transmits the curvature of 
the surface to the pressure field. This transmission is represented in the normal-stress 
boundary condition (4.5). 

It can be seen in figure 4 that there are progressively greater departures from the 
symmetry of solid-body rotation as the effect of gravity increases. The same is true as 
the Reynolds number increases and non-centripetal accelerations grow. An increase 
in the Reynolds number with the other parameters fixed corresponds to a reduction in 
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(b)  

FIGURE 6. Local force estimates and free-surface location for B = 1 andfo = 0.5. (a) g = 0.01, 
Re = 1. (b) g = 0-5, Re = 30. The vectors are the gravitational force Q, the inertial force I ,  
the pressure force P and the viscous force V .  
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the liquid viscosity. The maximum film thickness increases with Re and correspond- 
ingly the minimum film thickness decreases, the radial velocities grow, and the azi- 
muthal velocities lead and lag the rim velocity by greater amounts. Where the 
Reynolds number and gravity parameter are sufficiently large, the azimuthal velocity 
may actually become negative, as shown in figure 5. A zone of recirculation has 
appeared a t  the bottom of the cylinder. The onset of recirculation is found to depend 
on the amount of liquid present: recirculation appears at  lower Reynolds number for 
heavier liquid loading as indicated in figure 3. The flow sketched in figure 6 ( b )  contains 
a small recirculation zone and corresponds to the point just beyond the onset of 
recirculation for fo = 0.5 in figure 3. Detailed numerical results for this case appear in 
table 1.  Another case is tabulated in Orr (1976)) and further results are available from 
the authors. 

Another test of the validity of the numerical solutions can be made by comparison 
with a theoretical prediction of the behaviour of the maximum film thickness with 
increasing Reynolds number (Ruschak & Scriven 1976). The solution for g+ 0 predicts 
that the maximum film thickness always occurs in the upper right quadrant: for low 
Reynoldsnumber the maximum thickness in near 0 = 0, whereas for large Reynolds 
number it approaches 19 = &r (the minimum thickness is always diametrically opposite 
the maximum). The numerical solutions, however, accord with this prediction only 
when the surface-tension parameter s is small. When s is not small, exactly the 
opposite movement of the position of the maximum is observed, even at  low gravity. 
That is, as the Reynolds number increases, the maximum descends into the lower 
right quadrant; moreover the maximum and minimum shift away from diametrical 
opposition. The reason for this disagreement between the asymptotic and numerical 
solutions lies in the fact that the free-surface perturbations at  first order do not change 
the curvature of the meniscus, so that surface tension does not appear in the asymptotic 
solution a t  first order. The range of adequacy of the asymptotic solution is smaller the 
larger the Weber number and the surface tension. The effect is again the interaction of 
surface tension and meniscus curvature in the capillary-pressure term of the normal- 
stress boundary condition. When the meniscus departs appreciably from circularity, 
as when the Reynolds number and gravity parameter are not small, the presence of 
surface tension can substantially alter the flow. 

Finally, it  is of interest to compare the relative contributions of viscous, gravita- 
tional, pressure and inertial terms in the Navier- Stokes equation, and the contributions 
of curvature, viscous-stress and pressure terms in the normal-stress boundary con- 
dition. The gravitational term is known. Estimates of the inertial force I ,  pressure 
force P and viscous force V can be computed from a finite-element solution by evalu- 
ating the terms of an integral momentum balance on each element. For an interior 
element with boundary aE on which the normal is n the estimates are 

I = -IJEn.vvds, P = -IJE n.plds,  

v = J n. [VV+ (VV)T]~IS. 
JE 

If there is no gravity, the viscous term is zero while the inertial term consists solely 
of the centrifugal force, which is directed radially, and is exactly balanced by the 

6-2 
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opposing pressure-gradient term. With small gravity, the viscous contribution remains 
small and the inertial and pressure-gradient forces have small azimuthal components. 
Figure 6 ( a )  shows the free-surface location and force estimates for such a case 
(9 = 0.0 1, Re = 1, s = 1, fo = 0.6). When gravity and the Reynolds number are larger 
the force balance becomes much more complex, as portrayed in figure 6 ( b )  (9 = 0.5, 
Re = 30, s = 1,  fo = 0.5). For a typical element in the upper right quadrant the 
pressure-gradient force is small while gravity and the viscous force balance the inertial 
force. The forces do not quite balance because the solutions used to evaluate them are 
approximate; also, the viscous force terms require derivatives of the solutions, which 
are less accurate than the solutions themselves. In an element in the upper left quadrant 
a larger inertial force balances a larger pressure force and a viscous force which has 
changed direction, in agreement with the fact that the azimuthal velocity leads the 
rim velocity on the descending side. In  the lower right quadrant viscous forces are 
small. It is obvious that all of the terms in the Navier-Stokes equation are important 
for this flow. Similar estimates of the capillary presmre, normal viscous stress and 
pressure jump in the normal-stress boundary condition confirm that all the terms are 
generally of comparable size in rimming flows that depart appreciably from solid-body 
rotation. 

Conclusion 
The results presented here represent an advance in numerical simulation of viscous 
free-surface flows with surface tension. They are also a considerable extension of the 
finiteelement method beyond previous applications by Chan & Larock (1 973), 
Larock & Taylor (1976), Nickel1 et al. (1974) and Thompson et al. (1969), none of 
which included surface tension and in all of which the flow was idealized as either 
creeping or inviscid. The full Navier-Stokes equation for steady , two-dimensional, 
incompressible flow is solved here, and the effect of surface tension is fully accounted 
for in the normal-stress boundary condition. 

The solutions, samples of which are reported here, are clearly the result of complex 
interaction of inertial, gravitational, pressure, viscous and capillary forces, none of 
which can be disregarded except in limiting cases. It is apparent that other nonlinear 
flows of this degree of complexity can be simulated by the method presented, that 
more irregular free-surface flow domains can also be handled, and that the finite- 
element solutions will be convenient representations for further analyses of transport 
and stability. 
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